Supporting Information for Highly Selective Aziridination of Imines Using Trimethylsilyldiazomethane (TMSD) and Applications of *C*-Silylaziridines in Synthesis

Varinder K. Aggarwal,[‡]* Marco Ferrara

Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.

<u>v.aggarwal@bristol.ac.uk</u>

Received Date (will be automatically inserted after manuscript is accepted)

General methods: Flash chromatography was performed on silica gel (Merck Kiesegel 60 F₂₅₄ 230-400 mesh). TLC was performed on aluminium backed silica plates (60 F₂₅₄) which were developed using standard visualizing agents: UV fluorescence (254 and 366 nm), molybdic acid / Δ , anisaldehyde / Δ , permanganate / Δ . Melting points were determined on a Khofler hot stage. Infrared spectra were recorded as solutions (in CDCl₂, unless otherwise specified) on a Perkin-Elmer 157G Grating FT-IR spectrometer. Only selected absorbencies (v_{max}) are reported. ¹H NMR spectra were recorded at either 250 or 400 MHz on Bruker AC-250, or Bruker AM-400 instruments, respectively. Chemical shifts (δ_{μ}) are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak. ¹H NMR spectra were recorded at 250 MHz, unless otherwise specified. ¹³C NMR spectra were recorded at either 63 or 101 MHz on Bruker AC-250, or Bruker AM-400 instruments, respectively. Chemical shifts (δ_c) are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak and are assigned as s, d, t, q for C, CH, CH, and CH₂. Degenerate peaks are prefixed by the number of carbons. ¹³C NMR spectra were recorded at 63 MHz, unless otherwise specified. Low resolution mass spectra (m/z) were recorded on either VG Platform or VG Prospec spectrometers, with only molecular ions (M^+) , and major peaks being reported with intensities quoted as percentages of the base peak. High-resolution mass spectra were recorded on a VG Prospec spectrometer. Microanalyses were performed using a Perkin Elmer 2400 CHN elemental analyzer by A.H. Jones, Department of Chemistry, University of Sheffield.

Imines **1a-e**, ¹ **1f-g**, ² **1h**, ³ **1i**^{1,4} were prepared according to literature procedures.

TMSD and TBAT were purchased from Aldrich; TMSD was titrated prior to use.

Representative Procedure for the Aziridination of Imines Using TMSD. To a solution of *N*-tosylbenzaldimine (1a) (259.3 mg, 1.0 mmol) in 1,4-dioxane (5 mL) was added a 1.8 M solution of TMSD in hexanes (2.5 equiv.). After stirring for 7 h at 40•C, the solvent was removed and the crude mixture was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 20:1) to afford *trans-*2a (12.4 mg, 4%) and *cis-*2a (236.3 mg, 68%).

(2*R**,3*S**)-1-[(4-Methylphenyl)sulfonyl]-2-phenyl-3-(1,1,1-trimethylsilyl)aziridine (*cis*-2a): White solid; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.53$; m.p. 108-110•C (from petroleum ether/ethyl acetate); ¹H NMR (CDCl₃) • -0.38 [9H, s, Si(CH₃)₃], 2.18 (1H, d, *J* = 8.5 Hz, CHSi), 2.38 (3H, s, CH₃C₆H₄), 3.96 (1H, d, *J* = 8.5 Hz, CHPh), 7.16 (5H, br s, Ph), 7.28 (2H, d, *J* = 8.1 Hz, Ts), 7.83 (2H, d, *J* = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -2.5 (3q), 21.6 (q), 37.6 (d), 44.8 (d), 127.4 (2d), 127.7 (d), 128.2 (2d), 128.2 (2d), 129.7 (2d), 135.0 (s), 135.3 (s), 144.5 (s); IR •_{max}/ cm⁻¹ (CH₂Cl₂) 3066, 3032, 2959, 1599, 1496, 1450, 1323, 1159; MS m/z (EI) 345 (M⁺, 6), 190 (100), 73 (68); HRMS: found 345.1230, C₁₈H₂₃NO₂SSi requires 345.1219. Anal. Calcd for

[‡] Current Address: Department of Chemistry, Bristol University, Cantock's Close, Bristol BS8 1TS, UK.

¹ McKay, W. R.; Proctor, G. R. J. Chem. Soc., Perkin Trans 1 1981, 2435.

² Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.

³ Heintzelman, G. R.; Weinreb, S. M.; Parvez, M. J. Org. Chem. 1996, 61, 4594.

⁴ Weinreb, S. M.; Chase, C. E.; Wipf, P.; Wenkatraman, S. Org. Synth. 1997, 75, 161.

 $C_{_{18}}H_{_{23}}NO_2SSi:$ C, 62.57; H, 6.71; N, 4.05. Found: C, 62.64; H, 6.85; N, 4.10.

(2*R**,3*R**)-1-[(4-Methylphenyl)sulfonyl]-2-phenyl-3-(1,1,1-trimethylsilyl)aziridine (*trans*-2a): Colourless oil; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.57$; ¹H NMR (CDCl₃) • 0.15 [9H, s, Si(CH₃)₃], 1.91 (1H, d, *J* = 6.1 Hz, CHSi), 2.23 (3H, s, CH₃C₆H₄), 3.56 (1H, d, *J* = 6.1 Hz, CHPh), 6.97-7.01 (2H, m, Ph), 7.08-7.12 (3H, m, Ph), 7.11 (2H, d, *J* = 8.6 Hz, Ts), 7.66 (2H, d, *J* = 8.6 Hz, Ts); IR •_{max}/ cm⁻¹ (CH₂Cl₂) 3068, 2958, 1599, 1497, 1456, 1323, 1160; MS m/z (EI) 345 (M⁺, 9), 190 (100), 73 (79); HRMS: found 345.1224, C₁₈H₂₃NO₂SSi requires 345.1219.

$(2R^*, 3S^*) \hbox{-} 2-(4-Methoxyphenyl) \hbox{-} 1-[(4-methylphenyl) \hbox{-} sulfonyl] \hbox{-} 3-(1,1,1-methylphenyl) \hbox{-} 3$

trimethylsilyl)aziridine (*cis-***2b**): Pale yellow oil; eluent petroleum ether/ethyl acetate 2:1, $R_f = 0.53$; ¹H NMR (CDCl₃) • -0.31 [9H, s, Si(*CH*₃)₃], 2.18 (1H, d, *J* = 8.4 Hz, *CHSi*), 2.43 (3H, s, *CH*₃C₆H₄), 3.74 (3H, s, *CH*₃O), 3.95 (1H, d, *J* = 8.4 Hz, *CHC*HSi), 6.76 (2H, d, *J* = 8.4 Hz, C₆H₄OMe), 7.12 (2H, d, *J* = 8.4 Hz, C₆H₄OMe), 7.32 (2H, d, *J* = 8.1 Hz, Ts), 7.87 (2H, d, *J* = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -2.3 (3q), 21.7 (q), 37.8 (d), 44.5 (d), 55.2 (q), 113.5 (2d), 127.3 (s), 128.2 (2d), 128.5 (2d), 128.5 (2d), 129.6 (2d), 135.1 (s), 144.4 (s), 159.1 (s); IR •_{max}/ cm⁻¹ 3036, 2959, 1613, 1515, 1321, 1252, 1159; MS m/z (EI) 375 (M⁺, 24), 220 (100); HRMS: found 375.1329, C₁₉H₂₅NO₃SSi requires 375.1324. Anal. Calcd for C₁₉H₂₅NO₃SSi: C, 60.77; H, 6.71; N, 3.73. Found: C, 60.92; H, 6.83; N, 3.43.

(2*R**,3*S**)-2-(4-Chlorophenyl)-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-

trimethylsilyl)aziridine (*cis*-**2c**): Pale yellow oil; eluent petroleum ether/ethyl acetate 10:1, $R_f = 0.53$; ¹H NMR (CDCl₃) • -0.41 [9H, s, Si(*CH*₃)₃], 2.11 (1H, d, *J* = 8.4 Hz, *CHS*i), 2.34 (3H, s, *CH*₃C₆H₄), 3.86 (1H, d, *J* = 8.4 Hz, *CHC*HSi), 7.00-7.23 (4H, m, C₆H₄Cl), 7.24 (2H, d, *J* = 8.1 Hz, Ts), 7.77 (2H, d, *J* = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -2.3 (3q), 21.7 (q), 37.9 (d), 44.1 (d), 128.2 (2d), 128.4 (2d), 128.8 (2d), 129.7 (2d), 133.6 (s), 133.9 (s), 134.9 (s), 144.6 (s); IR •_{max}/ cm⁻¹ 3035, 2959, 1599, 1494, 1323, 1252, 1159; MS m/z (EI) 379 (M⁺, 1524), 224 (68), 86 (69), 84 (100). Anal. Calcd for C₁₈H₂₂ClNO₂SSi: C, 56.90; H, 5.84; N, 3.69. Found: C, 57.20; H, 5.95; N, 3.57.

(2*R**,3*R**)-2-(4-Chlorophenyl)-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-

trimethylsilyl)aziridine (*trans-2c*): Pale yellow oil; eluent petroleum ether/ethyl acetate 10:1, $R_f = 0.60$; ¹H NMR (CDCl₃) (selection of signals) • 0.29 [9H, s, Si(CH₃)₃], 2.02 (1H, d, J = 6.1 Hz, CHSi), 2.40 (3H, s, CH₃C₆H₄), 3.66 (1H, d, J = 6.1 Hz, CHCHSi), 7.80 (2H, d, J = 8.2 Hz, Ts).

(2*R**,3*S**)-1-[(4-Methylphenyl)sulfonyl]-2-(4nitrophenyl)-3-(1,1,1-trimethylsilyl)aziridine

(*cis*-2d): Pale yellow oil; eluent petroleum ether/ethyl acetate 10:1, $R_f = 0.23$; ¹H NMR (CDCl₃) • -0.24 [9H, s, Si(CH₃)₃], 2.37 (1H, d, J = 8.6 Hz, CHSi), 2.53 (3H, s,

CH₃C₆H₄), 4.14 (1H, d, J = 8.6 Hz, CHCHSi), 7.44 (2H, d, J = 8.3 Hz, Ts), 7.51 (2H, d, J = 8.6 Hz, C₆H₄NO₂), 7.96 (2H, d, J = 8.3 Hz, Ts), 8.20 (2H, d, J = 8.6 Hz, C₆H₄NO₂); ¹³C NMR (CDCl₃) • -2.3 (3q), 21.7 (q), 38.3 (d), 44.0 (d), 123.5 (2d), 128.2 (2d), 128.4 (2d), 129.8 (2d), 134.5 (s), 142.9 (s), 145.0 (s), 147.5 (s); IR •_{max}/ cm⁻¹ 3067, 2959, 1603, 1525, 1347, 1253, 1161; MS m/z (EI) 390 (M⁺, 6), 235 (100); HRMS: found 390.1077, C₁₈H₂₂N₂O₄SSi requires 390.1070. Anal. Calcd for C₁₈H₂₂N₂O₄SSi: C, 55.36; H, 5.68; N, 7.17. Found: C, 55.35; H, 5.80; N, 6.89.

(2*R**,3*R**)-1-[(4-Methylphenyl)sulfonyl]-2-(4-nitrophenyl)-3-(1,1,1-trimethylsilyl)aziridine

(tran*s*-**2d**): Pale yellow oil; eluent petroleum ether/ethyl acetate 10:1, $R_f = 0.33$; ¹H NMR (CDCl₃) • 0.25 [9H, s, Si(CH₃)₃], 1.96 (1H, d, J = 6.1 Hz, CHSi), 2.34 (3H, s, CH₃C₆H₄), 3.69 (1H, d, J = 6.1 Hz, CHCHSi), 7.21 (2H, d, J = 9.0 Hz, C₆H₄NO₂), 7.25 (2H, d, J = 8.6 Hz, Ts), 7.75 (2H, d, J = 8.6 Hz, Ts), 8.05 (2H, d, J = 9.0 Hz, C₆H₄NO₂); ¹³C NMR (CDCl₃) (selection of signals) • -1.1 (3q), 21.6 (q), 44.5 (d), 45.6 (d), 123.9 (2d), 127.0 (2d), 127.5 (2d), 129.7 (2d), 144.4 (s), 144.5 (s); IR •_{max}/ cm⁻¹ 2956, 1602, 1524, 1348, 1161; MS m/z (EI) 390 (M⁺, 16), 235 (100), 73 (46); HRMS: found 390.1066, C₁₈H₂₂N₂O₄SSi requires 390.1070.

(2*R**,3*S**)-1-[(4-Methylphenyl)sulfonyl]-2-[(*E*)-2phenyl-1-ethenyl]-3-(1,1,1-trimethylsilyl)aziridine

(cis-2e): Yellow solid; eluent petroleum ether/ethyl acetate 5:1 + 1% NEt₂, $R_f = 0.53$; m.p. 90-92•C (from petroleum ether/ethyl acetate); ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(CH₃)₃], 2.16 (1H, d, J = 8.2 Hz, CHSi), 2.45 $(3H, s, CH_{3}C_{6}H_{4}), 3.61$ (1H, t, J = 8.4 Hz, CHCHSi), 5.90 (1H, dd, J = 15.9, 7.9 Hz, CHCHPh), 6.72 (1H, d, J = 15.9 Hz, CHPh), 7.29-7.37 (5H, m, Ph), 7.34 (2H, d, J = 8.4 Hz, Ts), 7.85 (2H, d, J = 8.4 Hz, Ts); ¹³C NMR (C₆D₆) • -1.8 (3q), 21.1 (q), 37.0 (d), 45.2 (d), 124.8 (d), 126.6 (2d), 128.2 (d), 128.4 (d), 128.9 (2d), 129.7 (2d), 134.8 (2d), 136.5 (s), 136.7 (s), 144.0 (s); IR \bullet_{max} / cm⁻¹ (CH₂Cl₂) 3063, 3031, 2959, 1599, 1322, 1268, 1159; MS m/z (EI) 371 (M⁺, 11), 216 (100), 73 (93); HRMS: found 371.1373, C₂₀H₂NO₂SSi requires 371.1375. Anal. Calcd for C₂₀H₂₅NO₂SSi: C, 64.65; H, 6.78; N, 3.77. Found: C, 65.12; H, 6.79; N, 3.59.

(2R*,3S*)-2-Butyl-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-trimethylsilyl)aziridine (*cis*-2**f**): Colourless liquid; eluent petroleum ether/ethyl acetate 5:1, $R_c =$ 0.56; ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(CH₃)₃], 0.86 (3H, t, J = 6.7 Hz, CH_2CH_2), 1.20-1.45 (5H, m, CHHCH₂CH₂CH₃), 1.46-1.60 (1H, m, CHHCH), 1.93 $(1H, d, J = 8.2 \text{ Hz}, CHSi), 2.47 (3H, s, CH_2C_2H_1), 2.86$ (1H, td, J = 7.9, 4.9 Hz, CHCH₂), 7.35 (2H, d, J = 8.3 Hz, Ts), 7.84 (2H, d, J = 8.3 Hz, Ts); ¹³C NMR (CDCl₂) • -1.7 (3q), 13.9 (q), 21.6 (q), 22.2 (t), 29.8 (t), 29.9 (t), 36.1 (d), 44.7 (d), 128.2 (2d), 129.4 (2d), 135.4 (s), 144.1 (s); IR •_{max}/ cm⁻¹ 2960, 1599, 1317, 1252, 1158; MS m/z (EI) 325 (M⁺, 5), 170 (100), 121 (56), 119 (62); HRMS: found 325.1546, C₁₆H₂₇NO₂SSi requires 325.1532. Anal. Calcd for C₁₆H₂₇NO₂SSi: C, 59.03; H, 8.36; N, 4.30. Found: C, 59.00; H, 8.45; N, 4.26.

(2*R**,3*R**)-2-Butyl-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-trimethylsilyl)aziridine (*trans*-2f): Colourless liquid; eluent petroleum ether/ethyl acetate 5:1, $R_f =$ 0.59; ¹H NMR (CDCl₃) (selection of signals) • 0.06 [9H, s, Si(CH₃)₃], 1.86 (1H, d, *J* = 6.1 Hz, CHSi), 2.46 (3H, s, CH₃C₆H₄), 2.62 (1H, dt, *J* = 7.3, 6.0 Hz, CHCH₂).

(2*R**,3*S**)-2-Cyclohexyl-1-[(4-

methylphenyl)sulfonyl]-3-(1,1,1-

trimethylsilyl)aziridine (*cis*-**2**g): Colourless liquid; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.54$; ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(*CH*₃)₃], 0.90-1.25 (6H, m, CH₂CH₂CH₂CH₂CH₂), 1.53-1.79 (6H, m, CH₂CHCHC₂), 1.93 (1H, d, J = 8.2 Hz, CHSi), 2.46 (3H, s, CH₃C₆H₄), 2.61 (1H, t, J = 8.4 Hz, CHCHCH), 7.34 (2H, d, J = 8.1Hz, Ts), 7.83 (2H, d, J = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -1.6 (3q), 21.6 (q), 25.5 (t), 25.5 (t), 26.1 (t), 30.3 (t), 31.6 (t), 36.2 (d), 38.6 (d), 50.0 (d), 128.3 (2d), 129.4 (2d), 135.2 (s), 144.1 (s); IR •_{max}/ cm⁻¹ 2931, 1598, 1318, 1252, 1158; MS m/z (EI) 351 (M⁺, 14), 196 (100); HRMS: found 351.1700, C₁₈H₂₉NO₂SSi: C, 61.49; H, 8.31; N, 3.98. Found: C, 61.26; H, 8.53; N, 3.95.

(2*R**,3*R**)-2-Cyclohexyl-1-[(4-

methylphenyl)sulfonyl]-3-(1,1,1-

trimethylsilyl)aziridine (*trans*-2g): Colourless liquid; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.56$; ¹H NMR (CDCl₃) (selection of signals) • -0.16 [9H, s, Si(CH₃)₃], 1.61 (1H, d, J = 6.4 Hz, CHSi), 2.46 (3H, s, CH₃C₄H₄).

Ethyl (2*R**,3*S**)-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-trimethylsilyl)aziridine-2-carboxylate (*cis*-2h):⁵ Colourless liquid; ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(CH₃)₃], 1.26 (3H, m, CH₃CH₂), 2.12 (1H, d, J = 8.7 Hz, CHSi), 2.44 (3H, s, CH₃C₆H₄), 3.43 (1H, d, J = 8.7 Hz, NCHC), 4.17 (2H, m, CH₂), 7.33 (2H, d, J = 8.1 Hz, Ts), 7.83 (2H, d, J = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -2.4 (3q), 14.0 (q), 21.6 (q), 35.6 (d), 40.4 (d), 61.8 (t), 128.2 (2d), 129.6 (2d), 134.4 (s), 144.9 (s), 167.1 (s).

Ethyl (2*R**,3*R**)-1-[(4-methylphenyl)sulfonyl]-3-(1,1,1-trimethylsilyl)aziridine-2-carboxylate (*trans*-2h):⁵ Colourless liquid; ¹H NMR (CDCl₃) • 0.26 [9H, s, Si(CH_3)₃], 1.23 (3H, m, CH_3 CH₂), 2.32 (1H, d, J = 6.0 Hz, CHSi), 2.44 (3H, s, CH_3 Ch₄), 3.22 (1H, d, J = 8.7 Hz, NCHC), 4.17 (2H, m, CH_2), 7.33 (2H, d, J = 8.1 Hz, Ts), 7.86 (2H, d, J = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • -1.5 (3q), 14.0 (q), 21.6 (q), 39.4 (d), 41.1 (d), 61.8 (t), 127.7 (2d), 129.6 (2d), 136.2 (s), 144.4 (s), 167.8 (s).

 $(2R^*,3S^*)$ -2-Phenyl-3-(1,1,1-trimethylsilyl)-1-[2-(1,1,1-trimethylsilyl)ethyl]sulfonylaziridine (*cis*-2i): Colourless oil; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.62$; ¹H NMR (CDCl₃) • -0.21 [9H, s, Si(CH₃)₃], 0.00 [9H, s, Si(CH₃)₃], 1.11-1.19 (2H, m, CH₂Si), 2.20 (1H, d, J = 8.4 Hz, CHSi), 3.05-3.12 (2H, m, CH₂S), 3.91 (1H, d, J = 8.4 Hz, CHPh), 7.17-7.31 (5H, m, Ph); ¹³C NMR (CDCl₃) • -2.1 (3q), -2.0 (3q), 9.9 (t), 36.9 (d), 44.3 (d), 48.7 (t), 127.3 (2d), 127.9 (d), 128.3 (2d), 135.3 (s); IR •_{max}/ cm⁻¹ (CH₂Cl₂) 3033, 2957, 1606, 1321, 1253, 1141; MS m/z (CI with NH₃) 356 ([M+H]⁺, 21), 190 (100); HRMS: found [M+H]⁺ 356.1536, C₁₆H₃₀NO₂SSi requires 356.1536. Anal. Calcd for C₁₆H₂₉NO₂SSi: C, 54.04; H, 8.22; N, 3.94. Found: C, 54.15; H, 8.26; N, 3.81.

 $(2R^*, 3R^*)$ -2-Phenyl-3-(1, 1, 1-trimethylsilyl)-1-[2-(1,1,1-trimethylsilyl)ethyl]sulfonylaziridine (*trans*-2i): Colourless oil; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.72$; ¹H NMR (CDCl₃) (selection of signals) • 0.00 [9H, s, Si(CH₃)₃], 0.30 [9H, s, Si(CH₃)₃], 1.06-1.15 (2H, m, CH₂Si), 2.01 (1H, d, J = 6.0 Hz, CHSi), 3.06-3.12 (2H, m, CH₃S), 3.67 (1H, d, J = 6.0 Hz, CHPh).

Representative Procedure for the Coupling of Siaziridines with Electrophiles. To a solution of *cis*-**2a** (86.4 mg, 0.25 mmol) and TBAT (135.0 mg, 0.25 mmol, 1 equiv.) in THF (2.5 mL) was added benzaldehyde (76 •L, 0.75 mmol, 3 equiv.). After stirring for 12 h at 40•C, saturated NH₄Cl solution was added (5 mL), the organic solvent was removed and the reaction mixture was extracted with ethyl acetate (3×5 mL). The combined organic extracts were washed by saturated NaCl solution (5 mL), dried with anhydrous Na₂SO₄ and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 5:1) to afford *cis*-**5a** major diastereoisomer (55.8 mg, 59%) and *cis*-**5a** minor diastereoisomer (1.1 mg, 1%).

 $(R^*){(2R^*, 3R^*)-1-[(4-Methylphenyl)sulfonyl]-3-}$ phenylaziridin-2-yl}(phenyl)methanol (cis-5, major diastereoisomer): White solid; eluent petroleum ether/ethyl acetate 2:1, $R_r = 0.46$; m.p. 112-114•C (from petroleum ether/ethyl acetate); ¹H NMR (CDCl₂) • 2.06 (1H, br d, J = 2.1 Hz, OH), 2.45 (3H, s, $CH_{3}C_{6}H_{4}$), 3.33 (1H, dd, J = 8.9, 7.3 Hz, NCHCHOH), 4.02 (1H, d, J =7.3 Hz, NCHPh), 4.16 (1H, br d, J = 8.9 Hz, CHOH), 6.90-6.94 (2H, m, Ph), 7.19-7.32 (8H, m, Ph), 7.37 (2H, d, J = 8.1 Hz, Ts), 7.94 (2H, d, J = 8.1 Hz, Ts); ¹³C NMR (CDCl₂) • 21.8 (q), 46.0 (d), 51.2 (d), 70.7 (d), 126.2 (2d), 127.4 (2d), 128.3 (2d), 128.5 (4d), 130.0 (2d), 132.1 (s), 134.4 (s), 139.0 (s), 145.0 (s); IR \bullet_{max} cm⁻¹ 3587, 3035, 1599, 1329, 1163, 1092; MS m/z (CI with NH₃) 380 ([M+H]⁺, 6), 274 (48), 224 (100); HRMS: found [M+H]⁺ 380.1305, C₂₂H₂₂NO₂S requires 380.1320. Anal. Calcd for C₂₂H₂₁NO₂S: C, 69.63; H, 5.58; N, 3.69. Found: C, 69.36; H, 5.62; N, 3.57.

(*S**){(*2R**,3*R**)-1-[(4-Methylphenyl)sulfonyl]-3phenylaziridin-2-yl}(phenyl)methanol (*cis*-5, minor diastereoisomer): Colourless oil; eluent petroleum ether/ethyl acetate 2:1, $R_f = 0.41$; ¹H NMR (CDCl₃) (selection of signals) • 2.32 (3H, s, $CH_3C_6H_4$), 3.17 (1H, dd, *J* = 8.9, 7.0 Hz, NCHCHOH), 4.00 (1H, d, *J* = 8.9 Hz, NCHPh or CHOH), 4.16 (1H, d, *J* = 7.0 Hz, NCHPh or CHOH).

(1*R**)-1-{(2*R**,3*R**)-1-[(4-Methylphenyl)sulfonyl]-3phenylaziridin-2-yl}pentan-1-ol (*cis*-6, major diastereoisomer): Colourless oil; eluent petroleum

⁽⁵⁾ Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 1999, 2293.

ether/ethyl acetate 2:1, $R_f = 0.52$; ¹H NMR (CDCl₃) • 0.63 (3H, m, CH_3CH_2), 0.77-1.46 (6H, m, $CH_2CH_2CH_2$), 2.37 (3H, s, $CH_3C_6H_4$), 2.94-3.06 (2H, m, CHCHOH), 3.97 (1H, d, J = 6.7 Hz, CHPh), 7.14-7.25 (5H, m, Ph), 7.29 (2H, d, J = 8.1 Hz, Ts), 7.84 (2H, d, J = 8.1 Hz, Ts); ¹³C NMR (CDCl₃) • 13.7 (q), 21.7 (q), 22.2 (t), 26.7 (t), 33.1 (t), 45.8 (d), 50.8 (d), 68.2 (d), 127.1 (2d), 128.1 (3d), 128.4 (2d), 129.9 (2d), 132.3 (s), 134.5 (s), 144.9 (s); IR •_{max}/ cm⁻¹ 3592, 2960, 2953, 1599, 1329, 1163, 1093; MS m/z (CI with NH₃) 360 ([M+H]⁺, 12), 204 (100), 91 (41); HRMS: found [M+H]⁺ 360.1618, C₂₀H₂₆NO₃S requires 360.1633. Anal. Calcd for C₂₀H₂₅NO₃S: C, 66.82; H, 7.01; N, 3.90. Found: C, 66.78; H, 7.28; N, 3.66.

(1*S**)-1-{(2*R**,3*R**)-1-[(4-Methylphenyl)sulfonyl]-3phenylaziridin-2-yl}pentan-1-ol (*cis*-6, minor diastereoisomer): Colourless oil; eluent petroleum ether/ethyl acetate 2:1, $R_f = 0.43$; ¹H NMR (CDCl₃) • 0.56-1.37 (9H, m, $CH_3CH_2CH_2CH_2$), 2.38 (3H, s, $CH_3C_6H_4$), 2.91 (1H, dd, J = 8.9, 6.9 Hz, CHCHOH), 2.96-3.07 (1H, m, CHCH), 3.98 (1H, d, J = 6.9 Hz, CHPh), 7.20-7.26 (5H, m, Ph), 7.29 (2H, d, J = 8.1 Hz, Ts), 7.82 (2H, d, J = 8.1 Hz, Ts).

(*R**)Phenyl((2*R**,3*R**)-3-phenyl-1-{[2-(1,1,1-trimethylsilyl)ethyl]sulfonyl}aziridin-2-yl)methanol (*cis*-7, major diastereoisomer): Colourless oil; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.28$; ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(CH₃)₃], 1.07-1.27 (2H, m, CH₂Si), 1.69 (1H, br s, OH), 3.08-3.27 (2H, m, CH₂S), 3.21 (1H, dd, *J* = 8.9, 7.3 Hz, NCHCHOH), 3.93 (1H, d, *J* = 7.3 Hz, NCHPh), 4.19 (1H, d, *J* = 8.9 Hz, CHOH), 6.82-6.88 (2H, m, Ph), 7.14-7.37 (8H, m, Ph); ¹³C NMR (CDCl₃) • -2.0 (3q), 9.8 (t), 45.3 (d), 49.0 (t), 50.1 (d), 71.0 (d), 126.1 (2d), 127.4 (2d), 128.4 (d), 128.5 (d), 128.6 (4d), 132.3 (s), 139.4 (s); IR •_{max}/ cm⁻¹ 3603, 2958, 1325, 1253, 1145; MS m/z (CI with NH₃) 390 ([M+H]⁺, 4), 224 (100); HRMS: found [M+H]⁺ 390.1564, C₂₀H₂₈NO₃SSi requires 390.1559.

(*S**)**Phenyl**((*2R**,3*R**)-3-**phenyl-1-{**[2-(1,1,1**trimethylsilyl)ethyl]sulfonyl}aziridin-2-yl)methanol** (*cis*-7, minor diastereoisomer): Colourless oil; eluent petroleum ether/ethyl acetate 2:1, $R_f = 0.59$; ¹H NMR (CDC1₃) • 0.00 [9H, s, Si(*CH*₃)₃], 0.88 (1H, td, *J* = 13.8, 4.6 Hz, *CH*HSi), 1.00 (1H, td, *J* = 13.6, 4.2 Hz, *CH*HSi), 2.33 (1H, td, *J* = 13.7, 4.2 Hz, *CH*HS), 2.71 (1H, td, *J* = 14.0, 4.6 Hz, *CH*HS), 3.29 (1H, dd, *J* = 9.1, 7.0 Hz, NCHCHOH), 4.24 (1H, d, *J* = 9.1 Hz, NCHPh or *CHOH*), 4.32 (1H, d, *J* = 7.0 Hz, NCHPh or *CHOH*), 7.40-7.64 (10H, m, Ph).

(2S*,3R*)-2-Deuterium-3-phenyl-1-

(**phenylsulfonyl)aziridine** (*cis*-8):⁶ White solid; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.40$; m.p. 84-86•C (from petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) • 2.43 (3H, s, $CH_3C_6H_4$), 2.97 (1H, d, J =7.2 Hz, CHD), 3.76 (1H, d, J = 7.2 Hz, CHPh) 7.19-7.23 (2H, m, Ph), 7.26-7.30 (3H, m, Ph), 7.32 (2H, d, J = 8.2Hz, Ts), 7.86 (2H, d, J = 8.2 Hz, Ts); ¹³C NMR (CDCl₃) • 21.5 (q), 35.5 (dt, $J_{c.D} = 27.7$ Hz), 40.8 (d), 126.4 (2d), 127.8 (2d), 128.1 (d), 128.4 (2d), 129.5 (2d), 134.8 (s), 134.9 (s), 144.5 (s); IR \bullet_{max} cm⁻¹ 3036, 1600, 1322, 1162, 1093; MS m/z (EI) 274 (M⁺, 1), 119 (100), 92 (79); HRMS (CI with NH₃): found [M+H]⁺ 275.0965, C₁₅H₁₅DNSO₂ requires 275.0963.

Ring Opening of *cis*-2a with Sodium Azide: To a solution of *cis*-2a (41.5 mg, 0.12 mmol) in DMF (3 mL) was added NaN₃ (78.0 mg, 1.20 mmol, 10 equiv.). After stirring for 20 h at r.t. the solvent was removed and the crude mixture was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 12:1) to afford 9 (45.7 mg, 98%).

N1-[(1R*,2R*)-2-Azido-1-phenyl-2-(1,1,1trimethylsilyl)ethyl]-1-benzenesulfonamide (9): White solid; eluent petroleum ether/ethyl acetate 5:1, $R_c = 0.46$; m.p. 122-124•C (from petroleum ether/ethyl acetate); ¹H NMR (CDCl₃) • 0.00 [9H, s, $Si(CH_3)_3$], 2.23 (3H, s, $CH_{2}C_{6}H_{4}$), 2.93 (1H, d, J = 5.6 Hz, CHSi), 4.50 (1H, dd, J= 8.0, 5.6 Hz, CHPh), 5.21 (1H, d, J = 8.0 Hz, NH), 6.88-7.11 (7H, m, Ph and Ts), 7.32 (2H, d, J = 8.2 Hz, Ts); ¹³C NMR (CDCl₂) \bullet -2.6 (3q), 21.4 (q), 58.8 (d), 61.2 (q), 126.9 (2d), 127.0 (2d), 127.7 (d), 128.4 (2d), 129.1 (2d), 137.5 (s), 138.6 (s), 142.9 (s); IR \bullet_{max} cm⁻¹ 3376, 3034, 2959, 2098, 1600, 1412, 1330, 1254, 1161, 1092; MS m/z (CI with NH₃) 406 ([M+NH₄]⁺, 29), 361 (62), 260 (53), 229 (100), 205 (58), 192 (67), 189 (68), 106 (59), (77); HRMS: found $[M+NH_{4}]^{+}$ 90 406.1743, C₁₈H₂₈N₅O₂SSi requires 406.1733. Anal. Calcd for C₁₈H₂₄N₄O₂SSi: C, 55.64; H, 6.23; N, 14.42. Found: C, 55.46; H, 5.96; N, 14.79.

Ring Opening of *cis*-2a with Benzenethiol: To a solution of *cis*-2a (41.5 mg, 0.12 mmol) and benzenethiol (15 •L, 0.14 mmol, 1.2 equiv.) in toluene (0.7 mL) was added a 50% NaOH solution and Hex₄NCl (2.4 mg, 6 •mol, 5 mol%). After stirring for 5 h at r.t. the aqueous layer was extracted with diethyl ether (3 × 2 mL). The combined organic extracts were washed by saturated NaCl solution (2 mL), dried with anhydrous MgSO₄ and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 12:1) to afford 10 (41.0 mg, 75%).

*N*1-[(1*R**,2*S**)-1-Phenyl-2-(phenylsulfanyl)-2-(1,1,1-trimethylsilyl)ethyl]-1-benzenesulfonamide

(10): White solid; eluent petroleum ether/ethyl acetate 5:1, $R_f = 0.53$; m.p. 162-164•C (from petroleum ether/ethyl acetate); ¹H NMR (CDCl₃) • 0.00 [9H, s, Si(*CH*₃)₃], 2.08 (3H, s, *CH*₃C₆H₄), 2.51 (1H, d, *J* = 3.8 Hz, *CHS*), 4.71 (1H, dd, *J* = 8.9, 3.8 Hz, *CHN*), 5.41 (1H, d, *J* = 8.9 Hz, NH), 6.56-6.82 (12H, m, Ar), 7.22 (2H, d, *J* = 8.2 Hz, Ts); ¹³C NMR (CDCl₃) • -2.0 (3q), 21.4 (q), 44.4 (d), 58.0 (d), 15.8 (d), 126.8 (2d), 126.9 (d), 127.0 (2d), 127.8 (2d), 128.4 (2d), 128.9 (2d), 129.0 (2d), 136.6 (s), 137.7 (s), 139.6 (s), 142.8 (s); IR •_{max}/ cm⁻¹ 3358, 3066, 2956, 1600, 1410, 1346, 1252, 1160, 1091; MS m/z (CI with NH₃) 473 ([M+NH₄]⁺, 4), 332 (45), 260 (100), 244 (73), 190 (44), 106 (44), 91 (70), 73 (76); HRMS: found [M+NH₄]⁺ 473.1745, C₂₄H₃₃N₂O₂S₂Si requires 473.1753.

^{(6) 5} equiv. of CDCl₃ and 0.5 equiv. of TBAT were used in this case.

Anal. Calcd for $C_{24}H_{29}NO_2S_2Si$: C, 63.25; H, 6.41; N, 3.07. Found: C, 63.09; H, 6.39; N, 2.93.

Deprotonation and cyclisation of *cis*-2a: To a solution of *cis*-2a (51.8 mg, 0.15 mmol) in THF (1.5 mL) at $-78 \cdot \text{C}$ was added dropwise a 1.47 M solution of *n*-BuLi in hexanes (108 •L, 0.16 mmol, 1.05 equiv.). After stirring the resulting red solution for 20 min. more at -78•C, MeI (19 •L, 0.30 mmol, 2.0 equiv.) was added. The mixture was allowed to reach r.t. within one hour and saturated NH₄Cl solution was added (1 mL), the organic solvent was removed and the reaction mixture was extracted with diethyl ether (4 × 3 mL). The combined organic extracts were washed by saturated NaCl solution (3 mL), dried with anhydrous MgSO₄ and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 20:1) to afford **11** (40.5 mg, 75%).

(1S*,3aS*,7aS*,7bR*)-3a,6-Dimethyl-7b-phenyl-1- $(1,1,1-trimethylsilyl)-3,3a,7a,7b-tetrahydro-1H-3\lambda^6$ aziridino[1,2-b]benzo[d]isothiazole-3,3-dione (11): White solid; eluent petroleum ether/ethyl acetate 5:1, R_{e} = 0.63; m.p. $116-118 \cdot C$ (from petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₂) • -0.25 [9H, s, $Si(CH_2)_2$, 1.40 (3H, s, CH_2CSO_2), 1.92 (3H, t, J = 1.3 Hz, CH₂CCHC), 2.42 (1H, s, CHN), 2.95 (1H, d, J = 5.0 Hz, CHCHCN), 5.73 (1H, dq, J = 5.4, 1.2 Hz, CHCHCN), 5.79 (1H, dd, J = 9.7, 1.5 Hz, CHCHCS), 5.99 (1H, d, J = 9.7 Hz, CHCS), 7.31-7.38 (3H, m, Ph), 7.38-7.44 (2H, m, Ph); 13 C NMR (CDCl₃) • -3.1 (3q), 21.7 (q), 23.7 (q), 38.5 (d), 50.4 (d), 60.3 (s), 63.8 (s), 117.6 (d), 125.2 (d), 127.1 (d), 127.8 (2d), 128.5 (3d), 130.9 (s), 137.1 (s); IR •_{max}/ cm⁻¹ (CH₂Cl₂) 2961, 1448, 1329, 1252, 1162; MS m/z (CI with NH₃) 360 ([M+H]⁺, 4), 190 (100), 189 (64); HRMS: found $[M+H]^+$ 360.1437, $C_{10}H_{26}NO_2SSi$ requires 360.1454. Anal. Calcd for C₁₀H₂₅NO₂SSi: C, 63.47; H, 7.01; N, 3.90. Found: C, 63.53; H, 7.12; N, 4.19.